Sparse Representation of Cast Shadows via `1-Regularized Least Squares
نویسندگان
چکیده
Scenes with cast shadows can produce complex sets of images. These images cannot be well approximated by lowdimensional linear subspaces. However, in this paper we show that the set of images produced by a Lambertian scene with cast shadows can be efficiently represented by a sparse set of images generated by directional light sources. We first model an image with cast shadows as composed of a diffusive part (without cast shadows) and a residual part that captures cast shadows. Then, we express the problem in an `1-regularized least squares formulation, with nonnegativity constraints. This sparse representation enjoys an effective and fast solution, thanks to recent advances in compressive sensing. In experiments on both synthetic and real data, our approach performs favorably in comparison to several previously proposed methods.
منابع مشابه
Sparse representation of cast shadows via l1-regularized least squares
Scenes with cast shadows can produce complex sets of images. These images cannot be well approximated by lowdimensional linear subspaces. However, in this paper we show that the set of images produced by a Lambertian scene with cast shadows can be efficiently represented by a sparse set of images generated by directional light sources. We first model an image with cast shadows as composed of a ...
متن کاملVisual tracking and Illumination Recovery via Sparse Representation
Title of dissertation: VISUAL TRACKING AND ILLUMINATION RECOVERY VIA SPARSE REPRESENTATION Xue Mei, Doctor of Philosophy, 2009 Dissertation directed by: Professor David W. Jacobs Department of Computer Science And Professor Gang Qu Department of Electrical and Computer Engineering Compressive sensing, or sparse representation, has played a fundamental role in many fields of science. It shows th...
متن کاملAn Interior-Point Method for Large-Scale l1-Regularized Least Squares
Recently, a lot of attention has been paid to l1 regularization based methods for sparse signal reconstruction (e.g., basis pursuit denoising and compressed sensing) and feature selection (e.g., the Lasso algorithm) in signal processing, statistics, and related fields. These problems can be cast as l1-regularized least squares programs (LSPs), which can be reformulated as convex quadratic progr...
متن کاملAdaptive and Weighted Collaborative Representations for image classification
Recently, (Zhang et al., 2011) proposed a classifier based on collaborative representations (CR) with regularized least squares (CRC-RLS) for image face recognition. CRC-RLS can replace sparse representation (SR) based classification (SRC) as a simple and fast alternative. With SR resulting from an l1-regularized least squares decomposition, CR starts from an l2-regularized least squares formul...
متن کاملIterative Nearest Neighbors
Representing data as a linear combination of a set of selected known samples is of interest for various machine learning applications such as dimensionality reduction or classification. k-Nearest Neighbors (kNN) and its variants are still among the best-known and most often used techniques. Some popular richer representations are Sparse Representation (SR) based on solving an l1-regularized lea...
متن کامل